...day June 20XX - Morning/Afternoon
A Level Mathematics A
H240/01 Pure Mathematics

SAMPLE MARK SCHEME

MAXIMUM MARK 100

Text Instructions

1. Annotations and abbreviations

Annotation in scoris	Meaning
\checkmark and \boldsymbol{x}	
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working
M0, M1	Method mark awarded 0, 1
A0, A1	Accuracy mark awarded 0, 1
B0, B1	Independent mark awarded 0, 1
SC	Special case
\wedge	Omission sign
MR	Misread
Highlighting	
	Meaning
Other abbreviations in mark scheme	Mark for explaining a result or establishing a given result
E1	Mark dependent on a previous mark, indicated by ${ }^{*}$
dep*	Correct answer only
cao	Or equivalent
oe	Rounded or truncated
rot	Seen or implied
soi	Without wrong working
www	Answer given
AG	Anything which rounds to
awrt	By Calculator
BC	This question included the instruction: In this question you must show detailed reasoning.
DR	

2. Subject-specific Marking Instructions for A Level Mathematics A

Annotations should be used whenever appropriate during your marking. The A, M and B annotations must be used on your standardisation scripts for responses that are not awarded either 0 or full marks. It is vital that you annotate standardisation scripts fully to show how the marks have been awarded. For subsequent marking you must make it clear how you have arrived at the mark you have awarded.

An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to assist in marking incorrect solutions. Correct solutions leading to correct answers are awarded full marks but work must not be judged on the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be looked at and anything unfamiliar must be investigated thoroughly. Correct but unfamiliar or unexpected methods are often signalled by a correct result following an apparently incorrect method. Such work must be carefully assessed. When a candidate adopts a method which does not correspond to the mark scheme, escalate the question to your Team Leader who will decide on a course of action with the Principal Examiner
If you are in any doubt whatsoever you should contact your Team Leader.
c The following types of marks are available.
M
A suitable method has been selected and applied in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may be specified.

A
Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awarded.

B

Mark for a correct result or statement independent of Method marks.

E

Mark for explaining a result or establishing a given result. This usually requires more working or explanation than the establishment of an unknown result.
Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored. Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to a case where a candidate passes through the correct answer as part of a wrong argument.
d When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. (The notation 'dep*' is used to indicate that a particular mark is dependent on an earlier, asterisked mark in the scheme.) Of course, in practice it may happen that when a candidate has once gone wrong in a part of a question, the work from there on is worthless so that no more marks can sensibly be given. On the other hand, when two or more steps are successfully run together by the candidate, the earlier marks are implied and full credit must be given.
e The abbreviation FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A and B marks are given for correct work only - differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be various alternatives that are equally acceptable. In such cases, what is acceptable will be detailed in the mark scheme. If this is not the case please, escalate the question to your Team Leader who will decide on a course of action with the Principal Examiner.
Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be 'follow through'. In such cases you must ensure that you refer back to the answer of the previous part question even if this is not shown within the image zone. You may find it easier to mark follow through questions candidate-by-candidate rather than question-by-question.

Unless units are specifically requested, there is no penalty for wrong or missing units as long as the answer is numerically correct and expressed either in SI or in the units of the question. (e.g. lengths will be assumed to be in metres unless in a particular question all the lengths are in km, when this would be assumed to be the unspecified unit.) We are usually quite flexible about the accuracy to which the final answer is expressed; over-specification is usually only penalised where the scheme explicitly says so. When a value is given in the paper only accept an answer correct to at least as many significant figures as the given value. This rule should be applied to each case. When a value is not given in the paper accept any answer that agrees with the correct value to 2 s.f. Follow through should be used so that only one mark is lost for each distinct accuracy error, except for errors due to premature approximation which should be penalised only once in the examination. There is no penalty for using a wrong value for g. E marks will be lost except when results agree to the accuracy required in the question.
g Rules for replaced work: if a candidate attempts a question more than once, and indicates which attempt he/she wishes to be marked, then examiners should do as the candidate requests; if there are two or more attempts at a question which have not been crossed out, examiners should mark what appears to be the last (complete) attempt and ignore the others. NB Follow these maths-specific instructions rather than those in the assessor handbook.

For a genuine misreading (of numbers or symbols) which is such that the object and the difficulty of the question remain unaltered, mark according to the scheme but following through from the candidate's data. A penalty is then applied; 1 mark is generally appropriate, though this may differ for some units. This is achieved by withholding one A mark in the question. Marks designated as cao may be awarded as long as there are no other errors. E marks are lost unless, by chance, the given results are established by equivalent working. 'Fresh starts' will not affect an earlier decision about a misread. Note that a miscopy of the candidate's own working is not a misread but an accuracy error

If a calculator is used, some answers may be obtained with little or no working visible. Allow full marks for correct answers (provided, of course, that there is nothing in the wording of the question specifying that analytical methods are required). Where an answer is wrong but there is some evidence of method, allow appropriate method marks. Wrong answers with no supporting method score zero. If in doubt, consult your Team Leader.

Question		Answer			Guidance	
1		$\begin{aligned} & x^{2}+8 x+(x-10)^{2}=84 \\ & \\ & 2 x^{2}-12 x+16=0 \\ & x=2, x=4 \\ & x=2 \text { and } y=-8 \\ & x=4 \text { and } y=-6 \end{aligned}$	M1 A1 A1 A1 $[4]$	$\begin{aligned} & \hline 1.1 \mathrm{a} \\ & 1.1 \\ & 1.1 \\ & 1.1 \end{aligned}$	Substitute the linear equation into the quadratic Correctly simplified answer BC, but allow by any valid method Values should be paired correctly	$\begin{aligned} & \text { OR M1 } \\ & (y+10)^{2}+8(y+10)+y^{2}=84 \\ & \text { A1 } 2 y^{2}+28 y+96=0 \\ & \text { A1 } y=-8, y=-6 \end{aligned}$
2	(a)	$\begin{aligned} & \overrightarrow{O M}=\frac{1}{2}(\overrightarrow{O C}+\overrightarrow{O B})=3 \mathbf{i}-2 \mathbf{j}+2 \mathbf{k} \\ & \|\overrightarrow{O M}\|=\sqrt{3^{2}+(-2)^{2}+2^{2}}=\sqrt{9+4+4}=\sqrt{17} \end{aligned}$	M1 E1 [2]	1.1 2.1	Attempt to find $\overrightarrow{O M}$ AG	
2	(b)	$\begin{aligned} \overrightarrow{B C} & =8 \mathbf{i}-4 \mathbf{j}-8 \mathbf{k} \\ \overrightarrow{O D} & =\overrightarrow{O A}+\overrightarrow{A D}=\overrightarrow{O A}+\overrightarrow{B C} \\ \overrightarrow{O D} & =3 \mathbf{i}-4 \mathbf{j}+2 \mathbf{k}+8 \mathbf{i}-4 \mathbf{j}-8 \mathbf{k} \\ & =11 \mathbf{i}-8 \mathbf{j}-6 \mathbf{k} \end{aligned}$	M1 E1 E1 [3]	1.1 2.4 2.1	Express $\overrightarrow{O D}$ in terms of known vectors AG An intermediate step must be seen	
3	(a)	Coordinates of vertices seen at $(0,0),(-2,-2)$ and $(2,1)$	$\begin{aligned} & \text { B1 } \\ & {[1]} \end{aligned}$	1.1	Vertices must be clearly shown	
3	(b)	Coordinates of vertices seen at $(2,1),(3,2)$ and $(1,-1)$	M1 A1 [2]	1.1 1.1	Clear attempt to translate graph to the right and to translate it vertically upwards All vertices correct	

Question		Answer	Marks	AO	Guidan	
4	(a)	$\begin{aligned} & r \theta=15 \\ & \frac{1}{2} r^{2} \theta=45 \\ & \frac{1}{2} r(15)=45 \\ & r=6 \text { and } \theta=2.5 \end{aligned}$	B1 B1 M1 A1 [4]	$\begin{gathered} 1.1 \\ 1.1 \\ \text { 3.1a } \\ 1.1 \end{gathered}$	Accept any method for solving the equations simultaneously	
4	(b)	$\begin{aligned} & \frac{1}{2}(6)^{2} \sin \left(\frac{5}{2}\right) \\ & 45-\text { their } \frac{1}{2}(6)^{2} \sin \left(\frac{5}{2}\right) \\ & 34.2\left(\mathrm{~cm}^{2}\right) \end{aligned}$	B1FT M1 A1FT [3]	$\begin{aligned} & 1.1 \\ & 1.1 \\ & 1.1 \end{aligned}$	FT their r and θ FT their r and θ	
5		DR $\log 3^{2 x+1}=\log 4^{100}$ $(2 x+1) \log 3=\log 4^{100}$ $\begin{aligned} & 2 x+1=126(.18 . . .) \\ & x=62.6 \end{aligned}$	*M1 A1 dep*M1 A1 [4]	1.1a 1.1 1.1 1.1	Correctly introduce logs (can use any base, if consistent) Obtain linear equation in x, with logarithm(s) allow $2 x+1 \log 3=\log 4^{100}$ cao	OR M1 $\log _{3} 3^{2 x+1}=\log _{3} 4^{100}$ A1 $2 x+1=\log _{3} 4^{100}$
6		Assume that there is a greatest even positive integer $N=2 k$ $N+2=2 k+2=2(k+1)$ Which is even and $N+2>N$ This contradicts the assumption Therefore there can be no greatest even positive integer	$\begin{gathered} \text { *E1 } \\ \text { M1 } \\ \text { dep*E1 } \end{gathered}$	$\begin{aligned} & 2.1 \\ & 2.1 \\ & 2.4 \end{aligned}$	Proof must start with an assumption for contradiction There must be a statement denying the assumption for the final E1	

Question		Answer	Marks	AO	Guidance	
7	(a)	Identify AP with $a=5000$ and $d=1500$ $\begin{aligned} & \frac{n}{2}(2(5000)+(n-1) 1500) \\ & =n(750 n+4250) \end{aligned}$	M1 A1 [2]	3.1b 1.1	Identification recognised by an attempt at the sum formula or nth term formula for an AP Or $750 n^{2}+4250 n$	
7	(b)	$\frac{5000\left(1-(0.9)^{n}\right)}{1-0.9}$ Obtain $50000\left(1-(0.9)^{n}\right)$	M1 A1 A1 [3]	3.1b 3.1b 1.1	Identification recognised by an attempt at the sum formula with n, $n-1$ or $n+1$ or with a positive sign in numerator Obtain correct unsimplified sum Or 50000-50000(0.9) ${ }^{n}$	
7	(c)	Obtain $750 n^{2}+4250 n-385000=0$ $n=20 \text { or } n=-\frac{77}{3}$ State 20 years	M1 A1 A1 [3]	3.1b 1.1 3.4	Equate to 385000 and solve a 3 term quadratic $=0$ BC both required Allow different methods for solving the quadratic	OR M1 For writing down and summing the total profit for at least the first four years (may be implied BC) A1 For finding that the total is equal to 385000 for $n=20$ A1 state 20 years
7	(d)	Business A's profits continue to grow Business B's profits eventually plateau at $£ 50000$ as $(0.9)^{n}$ tends to 0 with large enough n	E1 E1 [2]	$\begin{gathered} \hline 3.4 \\ 3.2 \mathrm{a} \end{gathered}$	Some mention is required about the effect of $(0.9)^{n}$	

Question		Answer	$\begin{gathered} \hline \text { Marks } \\ \hline \text { B1 } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { AO } \\ \hline 2.1 \\ \hline \end{array}$	Guidance	
8	(a)	$\begin{aligned} \frac{2 \tan \theta}{1+\tan ^{2} \theta} & =\frac{2 \sin \theta}{\cos \theta} \div \sec ^{2} \theta \\ & =\frac{2 \sin \theta \cos ^{2} \theta}{\cos \theta} \\ & =2 \sin \theta \cos \theta=\sin 2 \theta \end{aligned}$	B1 M1 A1 [3]	2.1 2.1 2.2a	Use $1+\tan ^{2} \theta=\sec ^{2} \theta$ and $\tan \theta=\frac{\sin \theta}{\cos \theta}$ Express LHS in terms of $\sin \theta$ and $\cos \theta$	M0 for attempts to rearrange to solve an equation
8	(b)	$\begin{aligned} & \text { DR } \\ & \sin 2 \theta=3 \cos 2 \theta \\ & \text { so } \tan 2 \theta=3 \\ & \theta=\frac{1}{2} \tan ^{-1} 3 \text { oe } \\ & 0.625,2.20 \end{aligned}$	B1 M1 A1 [3]	$2.2 \mathrm{a}$ 2.1 1.1	Use the result of (a) or otherwise achieve an equation in tan only Use correct order of operations to solve, must be shown Both values required. May be given to 3 s.f. or better (0.624523 , 2.195319), or both solutions in exact form $\frac{1}{2} \tan ^{-1} 3, \frac{1}{2} \tan ^{-1} 3+\frac{1}{2} \pi$	OR B1 for squaring both sides and achieving an equation in either sin or cos only For answers alone award no marks

Question		Answer	Marks	AO	Guidance	
9	(a)	$\begin{aligned} & \mathrm{f}^{\prime}(x)=3 x^{2}-2 x-5 \\ & x_{n+1}=x_{n}-\frac{x_{n}^{3}-x_{n}^{2}-5 x_{n}+10}{3 x_{n}^{2}-2 x_{n}-5} \\ & x_{n+1}=\frac{3 x_{n}^{3}-2 x_{n}^{2}-5 x_{n}-\left(x_{n}^{3}-x_{n}^{2}-5 x_{n}+10\right)}{3 x_{n}^{2}-2 x_{n}-5}= \\ & =\frac{2 x_{n}^{3}-x_{n}^{2}-10}{3 x_{n}^{2}-2 x_{n}-5} \end{aligned}$	B1 M1 E1	$\begin{aligned} & \hline 1.1 \\ & 1.1 \\ & 2.1 \end{aligned}$	Substitute into correct formula for Newton-Raphson AG a correct intermediate step leading to the given answer is required	
9	(b)	$\begin{aligned} & x_{2}=-2.607 \\ & x_{3}=-2.535 \\ & x_{4}=-2.533 \end{aligned}$	B1 [1]	1.1	BC All three values must be given to 4 significant figures.	
9	(c)	$\begin{aligned} & \mathrm{f}(-2.5325) \text { and } \mathrm{f}(-2.5335) \\ & (-2.5325)^{3}-(-2.5325)^{2}-5(-2.5325)+10= \\ & 0.0066125 \\ & (-2.5335)^{3}-(-2.5335)^{2}-5(-2.5335)+10= \\ & -0.0127017 \\ & \text { Since } \mathrm{f}(-2.5325)>0 \text { and } \mathrm{f}(-2.5335)<0 \\ & x_{4} \text { is } \alpha \text { to } 4 \text { s.f. } \end{aligned}$	M1 A1 E1 [3]	1.1 2.1 2.4	Accept other alternative values which would confirm α as a root correct to 4 s.f. At least the result of evaluation must be shown The change of sign must be pointed to	
9	(d)	$3(-1)^{2}-2(-1)-5=0$ Since the fraction is undefined at $x=-1, x_{2}$ is undefined	B1 E1 [2]	$\begin{aligned} & 2.1 \\ & 1.2 \end{aligned}$	Accept references to a stationary point of the function	or the tangent to the curve being horizontal

Question		Answer	Marks	AO	Guidan	
10	(a)	Attempt use of product rule Obtain $\ln (2 y-7)$ Obtain.... $+\frac{2(y+5)}{2 y-7}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ {[3]} \\ \hline \end{gathered}$	$\begin{gathered} \hline 1.1 \mathbf{a} \\ 1.1 \\ 1.1 \end{gathered}$	Award for sight of two terms	
10	(b)	$\begin{aligned} & (y+5) \ln (2 y-7)=0 \\ & y=-5 \text { or } y=4 \end{aligned}$ Substitute $y=4$ into $\frac{\mathrm{d} x}{\mathrm{~d} y}(=\ln 1+18)$ Obtain $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{18}$ Substitute $y=-5$ into $\frac{\mathrm{d} x}{\mathrm{~d} y}$ (or x) and indicate that $\ln (-17)$ does not exist	M1 M1 A1 M1 A1 [5]	1.1 3.1a 1.1 2.1 2.3	Substitute $x=0$ and attempt to solve May attempt to form $\frac{d y}{d x}$ by attempting to form the reciprocal. Allow any attempt however poor Do not allow $\ln \|-17\|$ May state that the \ln graph does not exist for negative values or at $(0$, -17)	

Question		Answer	$\begin{gathered} \hline \text { Marks } \\ \hline \text { B1 } \end{gathered}$	$\begin{gathered} \hline \mathrm{AO} \\ \hline 1.1 \end{gathered}$	Guidance	
11	(a)	$\begin{aligned} & \mathrm{fg}(x)=(6 x-2 a)^{2}+8 a(6 x-2 a)+4 a^{2} \\ & =36 x^{2}+24 a x-8 a^{2} \\ & (\mathrm{fg})^{\prime}(x)=72 x+24 a=0 \end{aligned}$ $\begin{aligned} & x=-\frac{a}{3}, \text { giving } \\ & \operatorname{fg}\left(-\frac{a}{3}\right)=(-4 a)^{2}+8 a(-4 a)+4 a^{2}=-12 a^{2} \end{aligned}$ Stationary point of fg is a minimum so range of $\operatorname{fg}(x) \geq-12 a^{2}$ or $\left[-12 a^{2}\right]$	B1 M1 M1 E1 [4]	1.1 1.1 2.1 2.2a	Accept unsimplified form Differentiate their $\operatorname{fg}(x)=0$ or use square completion: $\begin{aligned} & 4\left(9 x^{2}+6 a x-2 a^{2}\right)=4(3 x+a)^{2}-4 a^{2} \\ & -8 a^{2} \end{aligned}$ Solve for x and substitute their value for x in $\operatorname{fg}(x)$ Must mention minimum Do not accept $x \geq-12 a^{2}$	OR M1 Complete a square on $\mathrm{f}(x)$ A1 Obtain $(x+4 a)^{2}-12 a^{2}$ M1 Substitute $\mathrm{g}(x)$ and simplify E1 Obtain $(6 x+2 a)^{2}-12 a^{2}$ or equivalent form and state $\operatorname{fg}(x) \geq-12 a^{2}$
11	(b)	$144+48 a-8 a^{2}=144$ $a=6$	M1 M1 A1 [3]	$\begin{aligned} & \hline \text { 3.1a } \\ & 1.1 \\ & 1.1 \end{aligned}$	Substitute $x=2$ in their $\operatorname{fg}(x)$ and equate to 144 Attempt to solve their equation Do not give this mark if $a=0$ also given as an answer	
11	(c)	Each y value in the range $\left(y>-12 a^{2}\right)$ corresponds to two x values, e.g. corresponds to $x=1.46$ or -5.46 Therefore fg has no inverse	M1 E1 [2]	2.4 $2.2 \mathrm{a}$	An example or graph must be given, or a clear explanation that quadratic functions on the real numbers are one-to-many.	

Question		Answer	Marks M1 A1 [2]	$\begin{gathered} \hline \mathrm{AO} \\ \hline 1.1 \mathrm{a} \\ 1.1 \end{gathered}$	Guidance	
12	(a)	$\begin{aligned} & \text { Use } \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} \theta} \div \frac{\mathrm{d} \theta}{\mathrm{~d} x} \\ & \text { Obtain } \frac{-3 \cos \theta}{2 \sin \theta} \end{aligned}$				
12	(b)	$(y-3 \sin \theta)=\frac{-3 \cos \theta}{2 \sin \theta}(x-2 \cos \theta)$ $2 y \sin \theta-6 \sin ^{2} \theta=-3 x \cos \theta+6 \cos ^{2} \theta$ $\begin{aligned} & 2 y \sin \theta+3 x \cos \theta=6 \\ & 12 \sin \theta+6 \cos \theta=6 \Rightarrow 2 \sin \theta+\cos \theta=1 \end{aligned}$	M1 M1 A1FT E1 [4]	3.1a 1.1 1.1 2.1	Attempt equation of straight line in any unsimplified form Accept x, y confusion Simplify their equation and use $\cos ^{2} \theta+\sin ^{2} \theta=1$ Substitute $(2,6)$ and simplify to AG	OR M1 When $\theta=\theta_{Q}$, gradient of curve is given by $\frac{-3 \cos \theta_{Q}}{2 \sin \theta_{Q}}$ M1 The gradient of the line through $(2,6)$ and $\left(2 \cos \theta_{Q}, 3 \sin \theta_{Q}\right)$ is $\frac{3 \sin \theta_{Q}-6}{2 \cos \theta_{Q}-2}$ M1 Equate and clear fractions E1 Obtain AG
12	(c)	Use $R \sin (\theta+\alpha)$ on $2 \sin \theta+\cos \theta$ $R \sin \alpha=1, R \cos \alpha=2$ Obtain $\alpha=0.4636$ and $R=\sqrt{5}$ Use correct order of operations to solve $\sqrt{5} \sin (\theta+0.4636)=1$ Obtain 0 Obtain 2.21	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { B1 } \\ & \text { A1 } \\ & \text { [5] } \end{aligned}$	3.1a 1.1 1.1 2.2a 1.1	Should go as far as finding R and α Allow alternative forms Attempt to solve their $R \sin (\theta+\alpha)$ Or better (2.214345...)	OR M1 Square and use $\sin ^{2} \theta+\cos ^{2} \theta=1$ A1 $\begin{aligned} & 4 \sin ^{2} \theta+4 \sin \theta(1-2 \sin \theta) \\ & +\left(1-\sin ^{2} \theta\right)=1 \end{aligned}$ M1 Simplify and solve $5 \sin ^{2} \theta-4 \sin \theta=0$

| Question | | Answer | Marks | AO | Guidance |
| :--- | :--- | :--- | :--- | :---: | :---: | :---: |
| $\mathbf{1 4}$ | (d) | E.g. The model is continuous not discrete
 E.g. It treats all birds of any species as equivalent,
 but they will respond to the food in different
 ways. | E1 | 3.5a | |

Assessment Objectives (AO) Grid

Question	AO1	AO2	AO3 (PS)	AO3 (M)	Total
1	4				4
2a	1	1			2
2b	1	2			3
3a	1				1
3b	2				2
4a	3		1		4
4b	3				3
5	4				4
6		3			3
7a	1		1		2
7b	1		2		3
7c	1		1	1	3
7d			1	1	2
8a		3			3
8b	1	2			3
9 a	2	1			3
9b	1				1
9c	1	2			3
9d	1	1			2
10a	3				3
10b	2	2	1		5
11a	2	2			4
11b	2		1		3
11c		2			2
12a	2				2
12b	2	1	1		4
12c	3	1	1		5
13	3	3	3		9
14a	6		3		9
14b				1	1
14c				1	1
14d				1	1
Totals	53	26	16	5	100

PS = Problem Solving
$\mathrm{M}=$ Modelling

Summary of Updates

Date	Version	Change
October 2018	2	We've reviewed the look and feel of our papers through text, tone, language, images and formatting. For more information please see our assessment principles in our "Exploring our question papers" brochures on our website.
November 2019	2.1	Amendment to Instructions rubric on front cover.

